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Figure H6.9| Error probability plotted against the signal-to-noise ratio in dB after
equalizing with the Wiener filter (-0 and with the Zero Forcing filter (- x9. The
results are obtained through simulation using 5.000 symbols. The channel filter has
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Foreword

This book isthe third volume ina series on digital signal processing and associ ated

techni ques. Following on from —~undamental sll and —Advances and Applications, The
Deterministic Casell, it addresses the stochastic case. We shall presume throughout that readers
have a good working knowledge of MATLAB- and of basic elements of digital signal
processing.

Whilst our main focus is on applications, we shall also give consideration to key principles. A
certain number of the el ements discussed bel ong more to the domain of stati stics than to signal
processing; this responds to current trends in signal processi ng, which make extensive use of
this type of technique.

Over 60 solved exercises allow the reader to apply the concepts and results presented in the
following chapters. There will also be examples to alleviate any demonstrations that would
otherwise be quite dense. These can be found in more specialist books referenced inthe
bibliography. 92 programs and 49 functions will be used to support these examples and
corrected exercises.

Mathematical Concepts

The first chapter begins with a brief review of probability theory, focusing on the notions of
conditional probability, projection theorem and random variabl e transformeation. A number of
stati stical elements will also be presented, including the law of large numbers (LLN), the
limit-central theorem, or the delta-method.

Statistical inferences

The second chapter is devoted to statistical inference. Statistical inference consists of
deducing i nteresting characteristics from a series of observations with a certain degree of
reliability. A variety of techniques may be used. Inthis chapter, we shall discuss three broad
families of techniques: hypothesi s testing, parameter estimation, and the determinati on of
confidence intervals. Key notions include Cramer-Rao bound, likelihood ratio tests, maximum
likelihood approach and | east square approach for linear models.

Monte-Carlo simulation

Monte-Carlo methods invol ve a set of a gorithms which aimto calculate values using a
pseudo-random generator. The quantities to calculate are typically integrals, and in practice,
often represent the mathemati cal expectation of a function of interest. In cases using large
dimensions, these methods can significantly reduce the cal culation time required by

determini stic methods. Monte-Carlo methods invol ve drawing a series of samples, distributed
following atarget distribution. The main generation methods, i ncluding i mportance sampling,
the acceptance-rej ection method, the Gibbs sampler, etc., will be presented. Another objective
IS to minimize the mean square error between the cal culated and true val ues, and variance
reduction methods will be studied using simul ations.
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Second order stationary process

The fourth chapter covers second order random stati onary processes in the broadest sense:

W de Sense Sationary (WSS). The chapter is split into three parts, beginning with empirical
second order estimators, |eading to the correlogram. Then follow general and detailled results
onthe linear prediction whichis fundamental role inthe WSS time series. Thethird partis
devoted to the non-parametric spectral estimati on approaches (smooth periodograms, average
periodograns, etc.). A detail ed discussion on the bias-variance compromise is given.

Inferences on HMM

States are directly visible in simple Markov model s, and the modeling process depends
exclusively on transition probabilities. In hidden-state Markov models (HMM), however,
states can only be seen via observed signals which are statistically linked to these states.
HMMs are particularly useful as control model's, using latent variables of mixtures connected
to each observation.

A wide variety of problems may be encountered in relation to inference, for exampl e seeking
the sequence most likely to have produced a given series of observations; determining the a
posteriori distribution of hidden states; esti mati ng the parameters of a model; etc. Key

al gorithms i nclude the Baum-Wel ch a gorithm and the Viterbi algorithm, to cite the two best-
known examples. HMM have applications in a wide range of domains, such as speech
recognition (analysis and synthesis), automati c transl ation, handwriting analysis, activity
identification, DNA analysis, etc.

Selected Topics

Thefinal chapter presents applicati ons which use many of the principles and techniques
described in the preceding chapters, without falling into any of the categories defined in these
chapters. Thefirst sectionis devoted to high resolution techniques (MUSIC and ESPRIT
algorithms), whil st the second covers classic communi cation problems (coding, modul ation,
eye diagrams, etc.). The third section presents the Viterbi algorithm, and the fourth is given
over to scalar and vectorial quantification.

Annexes

A certain number of functions are givenin simplified formin the appendix. Thisincludes a
version of the boxpl ot function, alongsi de functions associated with the most common
distributions (Student, T2 and Fischer).

Remarques

The notation used in this book is intended to conformto current usage; in cases wherethisis
not the case, every care has been taken to remove any ambiguity as to the precise meaning of
terms. On a number of occasions, we refer to nitnslseries instead of nitnsltime series or
nitnsl sequences to avoid confusion.
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Notations and Abbreviations

empty set
N

£akn

=3¥.5

—_— Lk L

rect (t)
{ 1 when It| < T/2

0 otherwisze

sinc(x)

sin(mx)

= @x
1{x c A)
1 whenze A
= U otherwise (jngjcator function of A)
(ab]
={x:a< x b}
a ()
Dirac distribution when { € B
Kronecker symbol when £ € &
Re(2)
real part of z
Im(2)
imaginary part of z
| orj
= \,-"l'—_l
z(t) = X(f)
Fourier transform

(x*y)(t)

conti nuous time convol ution

= / rlu)y(t —u)du
114
(x*y)(t)

discrete time convol ution
= Y z(wy(t— u)

ucl

XorXx
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vector X
Y

(N ON)-dimension idertity matrix
A *

compl ex conjugate of A
A T

transpose of A
A H

transpose-conj ugate of A
Ael

inverse matrix of A
A#

pseudo-inverse matrix of A

probability measure

probability measure indexed by €
E{X}
expectation of X
Eq {X}
expectation of X under the distribution Fs
X, =X -E{X)}
zero-mean random variable
var (X ) =E {|_‘£'r.|"’}
variance of X
cov(X,Y) =E{X.Y}}
covariance of (X, Y)
cov (X) =cov (X, X) =var (X)
variance of X
E{X|Y}
conditional expectation of X givenY
a—=bora L b
acorvergesinlaw tob

or a convergesindistributionto b
a L .FJ

convergesin probability to b
a i .F.J

a converges almost surely to b

ADC
Analogto Digital Converter

ADPCM
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Adaptive Differential PCM

AMI
Alternate Mark Inversion

AR
Autoregressive

ARMA
AR and MA

BER
Bit Error Rate
bps
bits per second
cdf
cumul ati ve di stributi on function
CF
Clipping Factor
CZT
Causal z-Transform

DAC
Digital to Analog Converter

DCT
Discrete Cosine Transform

d.o.f.
degree of freedom

DFT
Discrete Fourier Transform

DTFT

Discrete Time Fourier Transform
EM

Expectation Maximi zation
ESPRIT

Estimation of Signal Parameter via Rotational Invariance Techniques
FIR

Finite Impul se Response
FFT

Fast Fourier Transform
|__|'

Continuous Time Fourier Transform

GLRT
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Generalized Likelihood Ratio Test
GEM

Generalized Expectation Maximization
GMM

Gaussian Mixture Model
HDB

High Density Bipolar
HMM

Hidden Markov Model
IDFT

Inverse Discrete Fourier Transform
i.i.d.iid

independent and identically distributed
IR

Infinite Impul se Response
IS

Inter Symbol Interference
KKT

Karush-Kuhn-Tucker
L DA

Linear Discriminant Analysis
LBG

Linde, Buzzo, Gray (algorithm)
LMS

Least Mean Squares
MA

Moving Average
MSE

Mean Square Error
MUSIC

MUItiple Signal Charaterization
PAM

Pulse Amplitude Modulation
PCA

Principal Component Analysis
PSK

Phase Shift Keying
QAM
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Quadrature Amplitude Modul ation

rls

recursive least squares
rms

root mean square

ROC
Recelver Operational Characteristic

SNR
SSignal to Noise Ratio

r.v./rv
random variable

STFT
Short Term Fourier Transform

TF
Transfer Function

WSS
Wide (Weak) Sense Stationary (Second Order) Process
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Chapter 1
Mathematical Concepts

1.1 Basic concepts on probability

Without describing in detail the formalism used by Probability Theory, we will simply remind
the reader of some useful concepts. However we advise the reader to consult some of the many
books with authority on the subject [1].

Definition 1.1 (Discrete random variable) Arandomvariable X is said to be discrete if the
set of its possible valuesis, at the most, countable. If {ay, “ , a, “ }, wheren e ¥, isthe set

of its values, the probability distribution of X is characterized by the sequence:

px(n) =Pr(X =an) (1_1)
representing the probability that X is equal to the element a,,. These values are such that 0 —
ox (N) <1and Q; gox (N) = 1.

This|eads us to the probability for the random variable X to belong to theinterval ]Ja,b]. Itis
given by:

Pr(X €la,b)) =%, oprx(n)l(an €la,b])

The function defined for x € R by:

Fx(z) = Pr(X <2)=Y(n, <;Px(n) (1.2)
= ¥ oPx(n)l(an E] - .x,..!'::

L an;

is called the cumulative distribution function (cdf) of the randomvariable X. It isamonotonic
increasing function, and verifies Fy (¥4 = 0 and Fy (+%5 = 1. Its graph resembl es that of a

stai rcase function, the jumps of which are located at x-coordinates a,, and have an amplitude of
Px (N).
Definition 1.2 (Two discrete random variables) Let X and Y be two discrete random
variables, with possible values{a,,” ,a,,“ } and{bg, “ , b, “ } respectively. The joint
probability distribution is characterized by the sequence of positive val ues:

pxyv(n, k) =Pr(X = an, Y = ) (13)

with 0 < pxy(n, k) < 1 and E“-;:,.J EJ_.-_;._,[] pxy(n, k) =1.

Pr(X=a,, Y=Dby) represents the probability to simultaneously have X = a, and Y = by. This
definition can easily be extended to the case of afinite number of random variables.
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Property 1.1 (Marginal probability distribution) Let X and Y be two discrete random
variables, with possible values{a,,” , a,, “ } and{by" , by, } respectively, and with
their joint probability distribution characterized by pyy (n, K). We have:

px(n) = Pr(X =a,)= Z-“-‘"’"-rr"';"] (14)

k=0

o

(k) = Pr(¥Y =h) = Zp_\;y[n_k]

px (n) and py (k) denote the marginal probability distribution of X and Y respectively.

Definition 1.3 (Continuous random variable) Arandomvariableis said to be continuous 2 if
its values belong to R and if, for any real numbers a and b, the probability that X belongs to
theinterval ]a,b] isgiven by:

Pr(X €la,b]) = [ px(z)dr = / px(z)l(z €]a, b])dz (1'5)

where py (X) isa function that must be positive or equal to zero such that /- x(#)dz =1,
(x) is called the probability density function (pdf) of X.

The function defined for any x € R by:

Fyx(z)=Pr(X <z)= [ P (u)du (16)

is called the cumulative distribution function (cdf) of the randomvariable X. It isamonotonic
increasing function and it verifies Fy (e¥4) = 0 and Fy (+¥3 = 1. Notice that py (X) also
represents the derivative of Fy (X) with respect to x.

Definition 1.4 (Two continuous random variables) Let X and Y be two random variables
with possible valuesin R OR. They are said to be continuous if, for any domain A of R?, the
probability that the pair (X, Y) belongsto Ais given by:

Pr{(X.¥Y) e A) = /[ Pxv(T, _!Jf:efxi!'{i'j_ig.f (17)
S JSA

where the function pyy (X, y¥) 1 0, and is such that:

f / oxylz,y)dzdy = 1

Pxy (X, y) iscalled the joint probability density function of the pair (X, Y).

Property 1.2 (Marginal probability distributions) Let X and Y be two continuous random
variableswith ajoint probability distribution characterized by pyy (X,y). The probability

distributions of X and Y have the following marginal probability density functions:
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+ o
px(zr) = [ pxy(z,y)dy (1.8)

P
pyly) = [ pxy (z,y)dz

Anexample involving two real randomvariables (X, Y) isthe case of a complex random
variableZ =X+ jY.

It is also possible to have a mixed situation, where one of the two variables is discrete and the
other is continuous. This |leads to the following:

Definition 1.5 (Mixed random variables) Let X be a discrete random variable with possible
values{ay,“ ,a, “ } and Y a continuous random variable with possible valuesin E. For

any value a,,, and for any real numbers a and b, the probability:

b
Pr(X —a,,Y cla b)) = [ pxy (n.y)dy (1.9)

where the function pyy (n, ), withn e {0,* , k,“ } andy € R, ist Oand verifies
E“-_;:,_I.Nlr:;‘ pxy(n,y)dy = 1.

Definition 1.6 (Two independent random variables) Two randomvariables X and Y are said
to be independent if and only if their joint probability distribution is the product of the
marginal probability distributions. This can be expressed:

| for two discrete random variables:
pxy(n, k) = px(n)py(k)
| for two continuous random variables:
pxy(z,y) = px (z)py (v)
| for two mixed random variables:
Pxy(n,y) =pxin)py( _i,':I
where the marginal probability distributions are obtained with formulae (1.4) and (1.8).

It is worth noting that, knowing pyy (X, ¥), we cantell whether or not X and Y are i ndependert.
To do this, we need to cal culate the marginal probability distributions and to check that pyy
(X,Y) = px (X)py (y). If that is the case, then X and Y are independernt.

The following definition is more general.

Definition 1.7 (Independent random variables) The randomvariables (X, ,X,) arejointly

independent if and only if their joint probability distribution is the product of their marginal
probability distributions. This can be expressed:

PX1Xa... X (T1, T2, - - -y Bn) = PX, (Z1)0X, (T2) - - - PX . (Tn) (1.10)
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where the marginal probability distributions are obtained as integrals with respect to (n e
1) variables, calculated from px: xz a1, %2, - Zn),

For exampl e, the marginal probability distribution of X; has the expression:

px,(T1) = [ /.E?.\'..‘-.';....\',,I~E‘1~-!'2------r'u )dzs . . . dzy

| —
En—1

In practice, the following result is a simple method for determining whether or not random
variables are independent: if px.x.. x.(¥1.72.....7.) is a product of n positive functions of the
type f1(x)fo( X)) “ f(X,), thenthe variables are independent.

It should be noted that if n random variables are i ndependent of one another, it does not
necessarily mean that they are jointly i ndependent.

Definition 1.8 (Mathematical expectation) Let X be a randomvariable and f (x) a function.
The mathematical expectation of f (X)| respectively f (X, Y)| isthevalue, denoted by
E{f(X)) respectively E{f(X.Y)}| defined:

| for a discrete randomvariable, by:
E{f(X)} =" flan)px(n)

| for a continuous random variable, by:

E{f(X)}= f f(z)px (z)dx

| for two discrete random variables, by:

E{f(X,Y)} = Z Z flan, b )pxy (n, k)

n0 k20

| for two continuous random variables, by:

E(/Y)} = [ [ § (@, ¥)pxy (=, y)dady

provided that all expressions exist.

Property 1.31f {X 1, X,," , X} arejointly independent, then for any integrable functions
fy, £, L fy:

; 111
E{Hfa-l-‘fa-'l} = [T E{fe(Xi)} (1.11)
k=1 k=1

Definition 1.9 (Characteristic function) The characteristic function of the probability
distribution of the randomvariables X ,“ , X, isthe function of (u,,“ ,u,) € R" defined by:

XMedical.co



