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Forew ord
This book is the third volum e in a series on digital signal processing and associated
techniques. Follow ing on from  ―Fundam entals‖ and ―A dvances and A pplications, The
D eterm inistic Case‖, it addresses the stochastic case. W e shall presum e throughout that readers
have a good w orking know ledge of M ATLA B¬  and of basic elem ents of digital signal
processing.

W hilst our m ain focus is on applications, w e shall also give consideration to key principles. A
certain num ber of the elem ents discussed belong m ore to the dom ain of statistics than to signal
processing; this responds to current trends in signal processing, w hich m ake extensive use of
this type of technique.

O ver 60 solved exercises allow  the reader to apply the concepts and results presented in the
follow ing chapters. There w ill also be exam ples to alleviate any dem onstrations that w ould
otherw ise be quite dense. These can be found in m ore specialist books referenced in the
bibliography. 92 program s and 49 functions w ill be used to support these exam ples and
corrected exercises.

M athem atical C oncepts

The first chapter begins w ith a brief review  of probability theory, focusing on the notions of
conditional probability, projection theorem  and random  variable transform ation. A num ber of
statistical elem ents w ill also be presented, including the law  of large num bers (LLN ), the
lim it-central theorem , or the delta-m ethod.

Statistical inferences

The second chapter is devoted to statistical inference. Statistical inference consists of
deducing interesting characteristics from  a series of observations w ith a certain degree of
reliability. A variety of techniques m ay be used. In this chapter, w e shall discuss three broad
fam ilies of techniques: hypothesis testing, param eter estim ation, and the determ ination of
confidence intervals. K ey notions include C ram er-Rao bound, likelihood ratio tests, m axim um
likelihood approach and least square approach for linear m odels.

M onte-C arlo sim ulation

M onte-Carlo m ethods involve a set of algorithm s w hich aim  to calculate values using a
pseudo-random  generator. The quantities to calculate are typically integrals, and in practice,
often represent the m athem atical expectation of a function of interest. In cases using large
dim ensions, these m ethods can significantly reduce the calculation tim e required by
determ inistic m ethods. M onte-Carlo m ethods involve draw ing a series of sam ples, distributed
follow ing a target distribution. The m ain generation m ethods, including im portance sam pling,
the acceptance-rejection m ethod, the G ibbs sam pler, etc., w ill be presented. A nother objective
is to m inim ize the m ean square error betw een the calculated and true values, and variance
reduction m ethods w ill be studied using sim ulations.
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Second order stationary process

The fourth chapter covers second order random  stationary processes in the broadest sense:
W ide Sense Stationary (W SS). The chapter is split into three parts, beginning w ith em pirical
second order estim ators, leading to the correlogram . Then follow  general and detailled results
on the linear prediction w hich is fundam ental role in the W SS tim e series. The third part is
devoted to the non-param etric spectral estim ation approaches (sm ooth periodogram s, average
periodogram s, etc.). A detailed discussion on the bias-variance com prom ise is given.

Inferences on H M M

States are directly visible in sim ple M arkov m odels, and the m odeling process depends
exclusively on transition probabilities. In hidden-state M arkov m odels (H M M ), how ever,
states can only be seen via observed signals w hich are statistically linked to these states.
H M M s are particularly useful as control m odels, using latent variables of m ixtures connected
to each observation.

A  w ide variety of problem s m ay be encountered in relation to inference, for exam ple seeking
the sequence m ost likely to have produced a given series of observations; determ ining the a
posteriori distribution of hidden states; estim ating the param eters of a m odel; etc. K ey
algorithm s include the B aum -W elch algorithm  and the Viterbi algorithm , to cite the tw o best-
know n exam ples. H M M  have applications in a w ide range of dom ains, such as speech
recognition (analysis and synthesis), autom atic translation, handw riting analysis, activity
identification, D N A analysis, etc.

Selected Topics

The final chapter presents applications w hich use m any of the principles and techniques
described in the preceding chapters, w ithout falling into any of the categories defined in these
chapters. The first section is devoted to high resolution techniques (M U SIC and ESPR IT
algorithm s), w hilst the second covers classic com m unication problem s (coding, m odulation,
eye diagram s, etc.). The third section presents the Viterbi algorithm , and the fourth is given
over to scalar and vectorial quantification.

A nnexes

A  certain num ber of functions are given in sim plified form  in the appendix. This includes a
version of the boxplot function, alongside functions associated w ith the m ost com m on
distributions (Student, τ2 and Fischer).

R em arques

The notation used in this book is intended to conform  to current usage; in cases w here this is
not the case, every care has been taken to rem ove any am biguity as to the precise m eaning of
term s. O n a num ber of occasions, w e refer to nitnslseries instead of nitnsltim e series or
nitnslsequences to avoid confusion.
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Notations and Abbreviations
ε

em pty set

= 
rectT (t)

= 
sinc(x)

= 

=  (indicator function of A)
(a, b ]

= {x: a <  x ← b}
α (t)

R e(z)
real part of z

Im (z)
im aginary part of z

i or j
= 

Fourier transform
(x*y)(t)

continuous tim e convolution

(x*y)(t)
discrete tim e convolution

x or x
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vector x
I N

(N Õ N )-dim ension identity m atrix
A *

com plex conjugate of A
A T

transpose of A
A H

transpose-conjugate of A
A℮1

inverse m atrix of A
A#

pseudo-inverse m atrix of A

probability m easure

probability m easure indexed by ε

expectation of X

expectation of X under the distribution 

zero-m ean random  variable

variance of X

covariance of (X, Y)
cov (X) = cov (X, X) = var (X)

variance of X

conditional expectation of X given Y

a converges in law  to b 
or a converges in distribution to b

converges in probability to b

a converges alm ost surely to b
A D C

A nalog to D igital Converter
A D PC M
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A daptive D ifferential PCM
A M I

A lternate M ark Inversion
A R

A utoregressive
A R M A

A R  and M A
BE R

B it Error R ate
bps

bits per second
cdf

cum ulative distribution function
C F

C lipping Factor
C ZT

C ausal z-Transform
D A C

D igital to A nalog C onverter
D C T

D iscrete C osine Transform
d.o.f.

degree of freedom
D FT

D iscrete Fourier Transform
D T FT

D iscrete Tim e Fourier Transform
EM

Expectation M axim ization
ESPR IT

Estim ation of Signal Param eter via R otational Invariance Techniques
FIR

Finite Im pulse R esponse
FFT

Fast Fourier Transform
FT

C ontinuous Tim e Fourier Transform
G LRT
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G eneralized Likelihood R atio Test
G EM

G eneralized Expectation M axim ization
G M M

G aussian M ixture M odel
H D B

H igh D ensity B ipolar
H M M

H idden M arkov M odel
ID FT

Inverse D iscrete Fourier Transform
i.i.d./iid

independent and identically distributed
IIR

Infinite Im pulse R esponse
ISI

InterSym bol Interference
K K T

K arush-K uhn-Tucker
L D A

Linear D iscrim inant A nalysis
L B G

Linde, B uzzo, G ray (algorithm )
L M S

Least M ean Squares
M A

M oving A verage
M SE

M ean Square Error
M U SIC

M U ltiple SIgnal C haraterization
PA M

Pulse A m plitude M odulation
PC A

Principal C om ponent A nalysis
PSK

Phase Shift K eying
Q A M
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Q uadrature A m plitude M odulation
rls

recursive least squares
rm s

root m ean square
R O C

R eceiver O perational C haracteristic
SN R

SSignal to N oise Ratio
r.v./rv

random  variable
STFT

Short Term  Fourier Transform
TF

Transfer Function
W SS

W ide (W eak) Sense Stationary (Second O rder) Process
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(1.2)

(1.3)

(1.1)

Chapter 1
M athem atical Concepts

1.1 Basic concepts on probability
W ithout describing in detail the form alism  used by Probability Theory, w e w ill sim ply rem ind
the reader of som e useful concepts. H ow ever w e advise the reader to consult som e of the m any
books w ith authority on the subject [1].

D efinition 1.1 (D iscrete random  variable) A random  variable X is said to be discrete if the
set of its possible values is, at the m ost, countable. If {a0, “ , an, “ }, where n , is the set
of its values, the probability distribution of X is characterized by the sequence:

representing the probability that X is equal to the elem ent an. These values are such that 0 ←
pX (n) ← 1 and Ω n↑ 0pX (n) = 1.

This leads us to the probability for the random  variable X to belong to the interval ]a,b ]. It is
given by:

The function defined for x   by:

is called the cum ulative distribution function (cdf) of the random  variable X. It is a m onotonic
increasing function, and verifies FX (℮⅓ ) = 0 and FX (+ ⅓ ) = 1. Its graph resem bles that of a
staircase function, the jum ps of w hich are located at x-coordinates an and have an am plitude of
pX (n).

D efinition 1.2 (Tw o discrete random  variables) Let X and Y be two discrete random
variables, w ith possible values {a0,“ , an, “ } and {b0, “ , bk, “ } respectively. The joint
probability distribution is characterized by the sequence of positive values:

Pr(X = an, Y = bk) represents the probability to sim ultaneously have X = an and Y = bk. This
definition can easily be extended to the case of a finite num ber of random  variables.
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(1.4)

(1.5)

(1.6)

(1.7)

Property 1.1 (M arginal probability distribution) Let X and Y be two discrete random
variables, w ith possible values {a0,“ , an, “ } and {b0,“ , bk, “ } respectively, and w ith
their joint probability distribution characterized by pXY (n, k). W e have:

pX (n) and pY (k) denote the m arginal probability distribution of X and Y respectively.

D efinition 1.3 (C ontinuous random  variable) A random  variable is said to be continuous 1 if
its values belong to  and if, for any real num bers a and b, the probability that X belongs to
the interval ]a,b ] is given by:

w here pX (x) is a function that m ust be positive or equal to zero such that .pX
(x) is called the probability density function (pdf) of X.

The function defined for any x  by:

is called the cum ulative distribution function (cdf) of the random  variable X. It is a m onotonic
increasing function and it verifies FX (℮⅓ ) = 0 and FX (+⅓ ) = 1. N otice that pX (x) also
represents the derivative of FX (x) w ith respect to x.

D efinition 1.4 (Tw o continuous random  variables) Let X and Y be two random  variables
w ith possible values in  Õ . They are said to be continuous if, for any dom ain Α of 2, the
probability that the pair (X, Y) belongs to Α is given by:

w here the function pXY (x, y) ↑ 0, and is such that:

pXY (x, y) is called the joint probability density function of the pair (X, Y).

Property 1.2 (M arginal probability distributions) Let X and Y be two continuous random
variables w ith a joint probability distribution characterized by pXY (x,y). The probability
distributions of X and Y have the follow ing m arginal probability density functions:
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(1.8)

(1.9)

(1.10)

A n exam ple involving tw o real random  variables (X, Y) is the case of a com plex random
variable Z = X +  jY.

It is also possible to have a m ixed situation, w here one of the tw o variables is discrete and the
other is continuous. This leads to the follow ing:

D efinition 1.5 (M ixed random  variables) Let X be a discrete random  variable w ith possible
values {a0,“ ,an, “ } and Y a continuous random  variable with possible values in . For
any value an, and for any real num bers a and b, the probability:

where the function pXY (n, y), w ith n  {0,“ , k, “ } and y  , is ↑ 0 and verifies 
.

D efinition 1.6 (Tw o independent random  variables) Tw o random  variables X and Y are said
to be independent if and only if their joint probability distribution is the product of the
m arginal probability distributions. This can be expressed:

‌ for tw o discrete random  variables:

‌ for tw o continuous random  variables:

‌ for tw o m ixed random  variables:

where the m arginal probability distributions are obtained w ith form ulae (1.4) and (1.8).

It is w orth noting that, know ing pXY (x, y), w e can tell w hether or not X and Y are independent.
To do this, w e need to calculate the m arginal probability distributions and to check that pXY
(x,y) = pX (x)pY (y). If that is the case, then X and Y are independent.

The follow ing definition is m ore general.

D efinition 1.7 (Independent random  variables) The random  variables (X1,“ ,Xn) are jointly
independent if and only if their joint probability distribution is the product of their m arginal
probability distributions. This can be expressed:
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(1.11)

w here the m arginal probability distributions are obtained as integrals with respect to (n ℮
1) variables, calculated from  .

For exam ple, the m arginal probability distribution of X1 has the expression:

In practice, the follow ing result is a sim ple m ethod for determ ining w hether or not random
variables are independent: if  is a product of n positive functions of the
type f1(x1)f2( x2) “ f n(xn), then the variables are independent.

It should be noted that if n random  variables are independent of one another, it does not
necessarily m ean that they are jointly independent.

D efinition 1.8 (M athem atical expectation) Let X be a random  variable and f (x) a function.
The m athem atical expectation of f (X) ‌ respectively f (X, Y) ‌ is the value, denoted by 

‌ respectively  ‌ defined:

‌ for a discrete random  variable, by:

‌ for a continuous random  variable, by:

‌ for tw o discrete random  variables, by:

‌ for tw o continuous random  variables, by:

provided that all expressions exist.

Property 1.3 If {X 1 , X2 , “ , Xn} are jointly independent, then for any integrable functions
f1, f2,“ , fn :

D efinition 1.9 (C haracteristic function) The characteristic function of the probability
distribution of the random  variables X 1,“ , Xn is the function of (u 1,“ ,un) n defined by:
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